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Abstract. The behaviour of steady jet-like flows is examined in a low-Rossby-number rotating fluid. Unlike the
corresponding non-rotating flow, the momentum flux of a jet in a rotating fluid is not conserved with distance
downstream and, as a consequence, the jet loses all of its momentum at a finite distance from the source, apparently
developing a singularity as this occurs. The asymptotic properties of the flow leading up to this singular point are
calculated for jets of various inflow widths and a structure which resolves the singularity that occurs in each of these
cases is described. The properties on the approach to the singularity are shown to be similar to those of the exact
solution described by Gadgil [12]. Both the asymptotic structure and the resolution of the singularity are, however,
applicable to the expected breakdown of any form of jet in rotating fluid under similar conditions. The
consequences of this are discussed, particularly in relation to the separated-flow structure proposed for motion past
a cylindrical obstacle in Page [3].

1. Introduction

In many ways the behaviour of E'’* layers in a low-Rossby-number rotating-fluid flow reflect
the properties of two-dimensional high-Reynolds-number boundary-layer flows. Phenomena
such as separation (Walker and Stewartson [1], Page [2, 3]) and wake formation (Page [4])
occur through similar mechanisms to their non-rotating counterparts, although there are
some novel effects which arise through the effect of suction from the Ekman layers in these
flows, where vortex stretching leads to the removal of vorticitity from the flow. Examples of
this are the finite length of the separated region behind a cylindrical object, described in
Page [3, 5], and the rapid exponential decay of the vorticity in the wake of an obstacle.
These effects have been noted in the experimental results of Boyer [6] and Boyer and Davies
[7], and in the numerical calculations by Matsuura and Yamagata [8] and Becker [9].

A further class of boundary-layer flows are narrow jets of fluid moving into an otherwise
stagnant fluid, and the archetype of these in a non-rotating fluid is the so-called Bickley jet
(Bickley [10], Schlichting [11, p. 172]), where the forcing for the jet is due to a line source of
momentum, producing a two-dimensional flow. Despite the apparent idealisation, this
describes the far field of a broad class of flows where fluid is injected into a stagnant fluid
with a dominant momentum flux in one direction. The corresponding problem in a
low-Rossby-number rotating fluid has been considered by Gadgil [12] and it was shown that,
apart from close to the source, the jet exhibits rather different properties from those in a
non-rotating fluid. The most significant of these is the termination of the jet at a finite
distance from the source, forming a singularity as it loses all of its fluid and momentum. To
the authors’ knowledge, no experimental work has been carried out in precisely this
configuration, although the results of a study by Savage and Sobey [13] on a similar flow with
a free surface do broadly support Gadgil’s conclusions.
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In this paper, more general forms of jets, of varying widths and inflow profiles, are
examined and it is shown that a similar singularity develops after a finite distance. For jets of
small inflow width, in comparison to the E'*-layer thickness, it is shown that the exact
solution found by Gadgil [12] is appropriate to leading order. For symmetric jets of width
O(E'*) a similar singularity occurs at a distance downstream which is proportional to the
maximum velocity in the jet. An asymptotic structure on the approach to this singularity is
described, and shown to be identical, to leading order, to that which occurs in Gadgil’s exact
solution for a small momentum source. The region over which this type of singularity is
resolved is then examined and the flow in this region is shown to match smoothly onto the
slow secondary motion that is induced by the entrainment and detrainment of the jet. Similar
results can be applied to jets wider than O(E 1’4y at inflow and to those with an asymmetric
inflow profile.

Unlike for the rotating flows past obstacles, there is no appropriate zero-Rossby-number
form for a jet flow and the governing equations are intrinsically nonlinear in the regime of
most interest, when the jet is long compared to its width. For a jet arising from an
infinitesimal momentum source, this parameter régime, like considered in Page [4], is such
that the flow close to the source is described accurately by the counterpart flow in a
non-rotating fluid. In both cases this requires that the Rossby number Ro, based on the
imposed momentum flux spread over the width of an E 4 layer, satisfies the restriction
Ro> E*'* where E is the Ekman number, since for smaller Rossby numbers the momentum
introduced by the jet extends no further than a distance of the order of an E'*-layer
thickness from the source. A further constraint on the Rossby number for the applicability of
the theory is that Ro < E'’, in order to ensure, among other things, the validity of the linear
analysis used to include the effect of the Ekman layers on the flow.

The plan of the paper is to introduce the governing equations for a jet-type flow in a
rotating fluid in Sec. 2, and then apply these to the simplest case of a narrow source in Sec.
3. Symmetric jets with width of O(E "4y are considered in Sec. 4 and the general form of the
singularity which occurs for these is described in Sec. 5, followed by the theory for the
resolution of this singularity in Sec. 6. The secondary flow which is induced outside of the jet
is calculated in Sec. 7. The final case, where the jet is wide compared to the E''* layer, is
described in Sec. 8 and the differences which arise for an asymmetric jet inflow are outlined
in Sec. 9. Some consequences of this work are discussed in Sec. 10.

2. Governing equations

Consider a homogeneous incompressible fluid of density p* and constant kinematic viscosity
v*, contained between two infinite parallel plates, a distance d* apart, and bounded on one
side by another plate extending normally between the two parallel plates, as illustrated in
Fig. 1. The entire configuration is rotating with a uniform angular velocity {2*k about an axis
which is perpendicular to the parallel plates so that, relative to the rotating system, both the
plates and the fluid are at rest. A jet of fluid of scale width ¢* and momentum flux J* per
unit length is then introduced into the otherwise stationary fluid through a slit in the
bounding wall which extends in the k direction, and the flow is permitted to reach steady
state. For convenience, the momentum introduced by the source is assumed to be directed
normally to the plate along which it lies, although this restriction is not crucial to most of the
analysis in this paper.
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Fig. 1. The flow configuration examined in this paper, relative to a frame rotating about the z*-axis at an angular
velocity Q*.

In terms of a velocity scale U* within the jet it is possible to define Rossby and Ekman
numbers for the flow such that

Ro=U*/Q*d* and E=v*/Q*d**, (2.1)

as in Page [4], and also to introduce dimensionless Cartesian coordinates for the position and
velocity given by

x=(x,y,z)=x*/d* and u=(u,v,w)=u*/U*. (2.2)

The origin of these coordinates is chosen as the point of entry of the jet, with the x axis in
the direction of the introduced momentum, the y axis extending along the intersection of the
plates (as shown in Fig. 1) and z parallel to the rotation axis. As a result, the fluid occupies
the region x >0 with —o<y <~ and 0<z <1, and the scale width of the jet in the y
direction is equal to ¢ = ¢*/d*. In terms of these dimensionless variables the full equation of
motion for steady flow is

Ro(u-V)u+2(k Xu)=—-VP + EVu, (2.3)

where P is the reduced pressure, defined as in Page [4], and u also satisfies the continuity
equation

V-u=0. (2.4)

For a low-Rossby-number rapidly-rotating flow, consideration is restricted to the case where
Ro<1 and E <1 so that the momentum equation, to leading order, reduces to the
geostrophic constraint

2(kXu)=-VP. (2.5)

It follows immediately from this equation that the dominant part of the motion of the fluid is
both depth-independent and two-dimensional, except in thin regions close to solid boun-
daries. As a result, the velocity components u and v are functions of (x, y) only and the
so-called vertical velocity w is zero to leading order. Analysis of the Ekman layers on the
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parallel plates (as, for example, in Moore [14]) indicates that there is an O(E''?) vertical flux

into and out of these regions, so that w is of order E'’* throughout the interior, and this
affects the flow through the next order of approximation to (2.3). Considering these
higher-order terms, it turns out that the vertical component of vorticity

o"v_au

{=5% "3y (2.6)
satisfies
9% "_f) - w 2
Ro(u FP +v 3y =2+ Ro?) o7 + EV,{. 2.7)

Note that the term Ro w(d{/dz) has been neglected from this equation, in comparison with
the other inertial terms since both w and 4/9z are small, and V? has been replaced by the
horizontal Laplacian V.. It follows immediately from (2.6) and (2.7) that dw/dz is
independent of z, to an approximation which is accurate to O(E) at least, and using the
Ekman compatibility conditions (Moore [14])

aw 1/2
- _E 2.

- ¢ (2.8)
throughout the depth of the interior flow. At this juncture it is convenient to introduce the

two additional parameters

1 1/2 R
A=Ro/2E' and &= (5 E“z) , (2.9)
as defined in previous low-Rossby-number studies so that, neglecting the relatively-small
terms Ro {(dw/dz) in (2.7), the vorticity equation can be written as

A(u%+v%)=—§+6z<j—;i+j—;§). y (2.10)

Apart form the scaling parameter A and the ‘Ekman friction’ term —¢, this equation is
identical to the vorticity eqation in a non-rotating fluid. Here, 8 represents the scale
thickness of the viscous shear layers in these flows, known as E'’* layers, and the final term
contributes to the leading-order motion only in these regions. Elsewhere (2.10) implies that
vorticity is removed from the fluid through the action of the Ekman layers, as for the inviscid
flows considered by Page [3].

Since the two-dimensional flow considered in this paper is forced by a narrow momentum
source at x=y =0, it can be expected that, as for the corresponding non-rotating flow,
motion will be concentrated in a thin jet extending along the x axis. Guided by the scaling in
the wake of a flat plate (Page [4]) it is appropriate to introduce the scaled coordinates

X=x/A and y=y/§, (2.11)
along with a scaled width ¢ = ¢/é of the jet and the velocity components

u=u and v=Av/8. (2.12)
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Neglecting terms of relative magnitude O(67%), (2.14) then becomes

e _a - 9%
— + — =0+ — 2. 3
“oi 7V 8y ¢ ay2’ (2.13)
where, as for most boundary-layer flows, { = —Ji/dy to within a similar accuracy. Integrat-

ing this equation once with respect to y, using that the flow is stagnant with &— 0 at the
outer edge of the jet, yields the boundary-layer-type equation

ou  _ou 8’u
i —+U0—=—u+-— 2.14
“oex TV ay “ ay*’ (2.14)
which should be solved in conjunction with the continuity equation
du  duv
— + —==0. .
z 3y 0 (2.15)

This pair of equations governs the flows considered in most of the remainder of this paper,
subject to the specification of a velocity profile u,(y) at the ‘initial’ point x = 0.

Before proceeding, it is useful to unravel the coordinate changes in the above analysis and
reconsider the flow in dimensional terms. First, the scale thickness of the E''* layer is 8d*,
or

*d*Z 1/4
5% = ( s ) (2.16)
in terms of the original parameters. Secondly, the length scale of the jet is Ad*, or

U*d*
*= 2(\0*—1)*)1/2 (217)
in terms of the velocity scale U*. To calculate this velocity scale for a given ‘initial’ profile
with a specified momentum flux

J*=f_ p*u*’*dy* at x*=0 (2.18)

we note that over a layer of thickness O(6*), the velocity has magnitude

J* 1/2
U"= = (p*T> . (219)

This can then be substituted into (2.1) to determine the appropriate value or Ro, and hence

A for that flow. It is then a simple matter to evaluate the magnitude of J* for which the

low-Rossby-number flow constraints E** < Ro < E'’?, described in Sec. 1, are satisfied.
As a direct consequence of the scaling (2.19), the appropriate initial condition for the

flows considered here is that the normalised momentum flux

T = [ 57 a5 2.20)
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is equal to unity at x = 0. For cases where the velocity scale U* is imposed through other
means, so that J is not necessarily equal one at x =0, the analysis in this paper remains valid
subject to the minor rescaling described in Sec. 10.

3. The case ¢ <1
When the width of the jet is much smaller than E'’*, the motion close to the inflow behaves
similarly to that in the equivalent problem in a nonrotating fluid, since the ‘Ekman suction’
term —u in (2.14) remains small for x <1 compared to the other terms in that equation
(each of which involve spatial derivatives). As a result, the flow evolves over a short
lengthscale of order ¢ into the same ‘sech® velocity profile that would occur for a
two-dimensional point source of momentum of that strength (as described, for example, in
Schlichting [11]). The resulting jet introduces only a small O(¢''*) flux of fluid through the
inflow but the motion produced by the momentum source induces an O(1) scaled mass flux,
fed from the surrounding fluid, which spreads out over a lateral distance of order ¥*"* and
contains velocities of O(x ~'’%) while ¢ <x <1.

The subsequent motion of a jet of this form was examined by Gadgil [12], who showed
that the flow retains a characteristic sech® velocity profile for x of O(1) with an exact solution
to (2.14) of the form

¢ = —F(x) tanh[ yG(¥)] , (3.1)

in terms of a stream function ¢ defined in the usual way through

" _ oy
= —— = . '2
u 35 and © PF: 3.2)
Substituting (3.1) into (2.14) yields a pair of ordinary differential equations for the two
functions F and G, which can be easily solved to yield that

A(f + B)—4/3 -1 ]1/2

F(7)=6(% + B)G(¥) and G(¥)= [ :

(3.3)
in terms of two arbitrary constants A and B. It is then straightforward to show that the
appropriate values of these constants for an effective point source of unit momentum flux at
x=0 are A=(2/9)""> and B=0, a solution which was originally derived in a magneto-
hydrodynamic context by Moreau [15]. Since G decreases monotonically as x increases, and
eventually equals zero, Moreau noted that the flow develops a singularity once the jet has
moved only a finite distance from its source, at X, = (2/9)"/* with the normalisation here. At
this point both the momentum and mass fluxes of the jet are equal to zero and the motion
due to the source can extend no further into the fluid. To examine the development of the
flow leading up to this singularity, several important properties of the jet described by the
exact solution (3.1) are shown on Fig. 2 as functions of the distance x from the source.
Notable on Fig. 2(a) is that the centerline velocity &(x, 0) decreases rapidly from its large
value when x <1 to approach zero as X — x_. Detailed examination of this curve shows that
its slope tends towards negative one in this limit, suggesting that the viscous term §°iz/dy” is
relatively small on the centerline on the approach to the singularity. Also apparent from the
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Fig. 2. Plots of (a) ¢.(%) and &(%, 0), and (b) 3 7, , (defined in the text) and J, as functions of the distance £ along a
jet due to a momentum source.
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values of ,(X) = ¢(x, ©) in Fig. 2(a) is that the jet entrains fluid initially but that once x is
larger than about 0.301 it begins to expell the same fluid at its outer edge, so that it has been
emptied by the point £ = x,. In particular, the slope of ¥,,(x) becomes unbounded as ¥ — %,
indicating that the ‘blowing velocity’ at the outer edge of the jet, v, = dy,/d¥, increases
indefinitely on the approach to this point. As this occurs the jet thickens rapidly, as is
indicated by the values of y,,, on Fig. 2(b), defined as the positions where the velocity of the
jet is equal to half of its centerline value. Also shown on Fig. 2(b) is the momentum flux J(¥)
which has unit value at x =0 and approaches zero as x— x,. As noted by Gadgil [12] (and
Moffatt and Toomre {16] in the MHD context) this satisfies the relation

=200, (3.4)
so that it decreases monotonically while the jet contains fluid but decreases more slowly on
the approach to the singularity. In contrast, the momentum flux of any jet in a nonrotating
fluid is conserved.

One advantage of the exact solution (3.1) for flows with ¢ <1 is that the structure of the
flow on the approach to the singularity is readily calculable. In particular, it can be shown
that both F and G are proportional to (X, — £)''> as £ — £, and hence that ¢, decreases in the
same manner. In addition, both the blowing velocity ©, and the thickness y,,, are
proportional to (x, — )", while the centreline velocity approaches (x, — x). It will be seen
in Sec. 5 that all of these properties are more generally applicable to any narrow jet flow in a
low-Rossby-number rotating fluid.

4. The case ¢ =0(1)

Once the width of the jet at inflow is of the same magnitude as E'’%, the full equation (2.14)
governs the flow for all x >0, and the precise form of the initial profile #,( y) will affect the
development of the jet for x of O(1). No exact solution of (2.14) is available in this general
case and so to examine this development it is necessary to use a numerical approach. Before
pursuing this, however, a number of general results can be outlined which suggest that a
singularity will also develop at a finite value of x in this case.

First, as pointed out in Sec. 3, the momentum flux of any jet will satisfy (3.3) and J will
decrease monotonically as the jet proceeds. This alone does not immediately imply that J
and ¢, will equal zero after a finite distance x, but it does indicate that ,, must eventually
become an increasing function of x. Also, since a jet with & =0 cannot transport mass
without momentum (or vice versa), then should J and ¢, ever vanish they must both do so at
the same point x,, in which case dJ/dx will also equal zZero.

Consideration of the momentum equation (2.14), evaluated for each x at the point y
where the jet has its maximum velocity, suggests that a finite point x, will exist; if & is the
velocity at this maximum then it satisfies the equation
ou _ _ . o

Uu-——=-u+

= 5 (4.1)

with ¢%#/3y* <0, and therefore the value of diz/dx along that line is at most negative one.
For a symmetric jet with a single maximum at y =0, this implies that & must cross zero
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before the point x = ,(0) and therefore that x, < u,(0). Furthermore, since diffusion will
act to decrease the value of |%z/dy?| on the centreline as the jet proceeds, i will remain
positive at least until the smaller value x = iZ,(0)%(iz,(0) — i7(0)).
The behaviour of the flow at the outer edge for y > 1 can also provide some information
about the thickening of the jet since the velocity u in that vicinity satisfies (Gadgil [12])
2 -

i 9
R L (4.2)
dy

where 0 is the blowing velocity defined earlier. As a result, # decays exponentially to zero is
proportion to e””, where y=1[—0,+ V02 +4]. While 0, is negative, and the jet is
importing fluid, this decays faster than e’ but once U, becomes positive the rate of decay
decreases, suggesting that the jet is widening. The extreme case of this occurs as v, becomes
large and y ~ 1/0,,, implying that the scale thickness of the jet is equal to v, in this situation;
the flow at the outer edge of the jet is then predominantly inviscid.

To examine the precise behaviour of jets of width O(E''*), several different initial profiles
were chosen. The simplest case is when the inflow has a sech” profile, since then the exact
solution (3.1) can be used to determine the relevant flow quantities. Choosing

i, (y) = (47‘) sech®(y/¢), (4.3)

(in accordance with the normalisation in Sec. 2) it can easily be shown that the appropriate
values of the constants in (3.3) are A= (8/¢>+1)B*? and B= 1V ¢%3, and these can be
used to plot similar quantities to those examined for the jet due to a point source in Sec. 3.
In particular, the values of both the centreline velocity and ¢, are shown on Fig. 3 for
several values of ¢, and it is clear from these that a singularity develops in each case, at a
point which moves closer to x = 0 as ¢ increases. For ¢ <1 the jet enters the flow with a finite
mass flux and then entrains fluid before beginning to detrain once G(x) falls below 3, with
the mass flux falling to zero as G vanishes. This is similar to the behaviour seen in Sec. 3. For
¢>1 the jet detrains fluid as soon as it enters the flow with ¢, approaching zero more
rapidly as ¢ is increased. In all cases the centreline velocity decreases to zero with the same
slope du/dx as x— x, and for the larger values of ¢ this slope is almost constant for all x.

The development of a sech’ initial profile need not, however, be typical since the velocity
profile remains the same shape for all stations x. To examine the development of other forms
of jet, several different inflow profiles were chosen and (2.14) was integrated numerically
using the box method (Keller and Cebeci [17]). In these computations up to 100 gridpoints
were used in both the x and y directions, with a geometric stretching in y extending out to
¥ = 25. In expectation of the thickening of the jet, a modified boundary condition was used
at y_ which ensured that (v du/dy + i), rather than &, was zero at the outer edge of the
computational domain. This can be justified from the asymptotic behaviour expected from
(4.2) for v, > 1, but it does not alter the profiles unless the thickness of the jet is of the same
magnitude as y,.

In principle, any initial profile with #, positive everywhere can be specified but, for
simplicity, consideration here is restricted to symmetric jets with a single velocity maximum.
Discussion of asymmetric jets is deferred until Sec. 9. The profiles chosen for presentation
here are:
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Fig. 3. Plots of ¢.(¥) and i#(x, 0) for the inflow profile (4.3) with ¢=1, 4, 1,2, 4.

5 %

@@ #y(y)=aexp(—yic?),
(b) @y (y)=al(y*+c%), (4.4)
© iy(7) = a{tanh[10(5/¢ + 1)] — tanh[10( 5/¢ — )]},

where in each case « is calculated to ensure that J,=1. Note that the first two of these
profiles do not decay exponentially at their outer edge, in the form predicted from (4.2), and
therefore v,, is not finite at ¥ = 0 (this did not, however, appear to affect the development of
the singularity which is more dependent on the behaviour of the flow for ¢ <1). The results
of the numerical calculations for each of these profiles are summarised on Fig. 4, where the
values of #(x, 0) and ¢, are shown for one choice of ¢. In all cases #(x, 0) tends to zero with
a slope of negative one and the jet empties at the same point while v,, becomes unbounded.
In the vicinity of the singularity the form of the solution in each case appears to be identical
to those shown in Figs 2 and 3. Plots of J and y,,, (not shown here) also show a similar
behaviour to those for the sech? profiles (4.3), with the jet thickening as it loses momentum.
To illustrate the form of the flow in this limit, some velocity profiles corresponding to profile
(4.4c) are shown in Fig. 5 at various values of x. This profile was chosen to have similar a
‘top hat’ shape for x = 0 but the velocities spread out rapidly as x is increased, forming into a
diffuse profile with a shape rather like sech’ on the approach to &, =0.5.

While the results of the numerical calculations presented here cannot be considered
conclusive proof, they do, along with the general properties outlined at the start of this
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Fig. 4. Plots of (%) and &(x, 0) for each of the inflow profiles (4.4) with ¢=1 for (a), (b) and ¢ =2 for (c).

section, strongly support the assertion that any form of jet will break down in a singular
region after proceeding only a finite distance into the fluid. For a fixed value of the
momentum flux this distance appears to decrease as the width of the jet increases (due to the
corresponding decrease in the centreline velocity at x = 0), and the blowing velocities at the
outer edge of the jet become stronger on the approach to the singularity as ¢ is increased.
The resemblance in form of the numerical solutions in Figs 2, 3 and 4 on the approach to the
singularity suggest that this singularity has a generic form for all types of jets. This is
supported by the form of the velocity profiles as x— x, in Fig. 5 and is pursued in the

following section.

0.6

a—a
oo

-10.0 -5.0 0.0

v 10.0

Fig. 5. Plots of the velocity profiles i(x, y) based on numerical calculations with the initial profile (4.4c) with ¢ = 2,

plotted at x=0.0, 0.1, 0.2, 0.3, 0.4.
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5. Approach to the singularity

Some of the features of the numerical solutions described in Sec. 4 suggest that an analytical
structure for the approach to the singularity at x = X, may be obtainable for any form of
inflow profile, much as it is available from the exact solution in Sec. 3 for sech’ profiles. In
particular, the decrease in the velocities in the jet in proportion to (X, — x) and the increase
in the thickness of the layer are reminiscent of features of the flow near the rear stagnation
point of a circular cylinder, described in Page [18] and Page and Cowley [19], suggesting that
the flow in the vicinity of x;, may be predominantly inviscid. As a result, a similar technique
to that used in Page and Cowley [19] is used again here, transforming the inviscid form of
(2.14) into Von Mises coordinates (%, ¢) so that the flow near x, satisfies

_du _
uﬁ——u. (5.1)

This equation can be integrated with respect to x to yield the explicit solution
= (%, - ) — h({) (5.2)

in terms of an unknown function 4 which, as in Page and Cowley, should be calculable from
the flow upstream of the singularity. The solution (5.2) is similar to equation (6.1) in Gadgil
[12], but the key to determining () in this context is the recognition that (5.2) remains
valid everywhere in the region for which ¢ < 1, and this is not only near ¥ = %, but also near
y =0 for x <x,. For the symmetry of u and the influence of diffusive effects across y = 0 the
form of u for y <1 is

i~ (%, - %) - 0(y) (5.3)
and using also that ¢ ~ (X — x,)y in the same region implies that % is proportional to ¢ for ¢
small. It follows immediately from the form of (5.3) that the equation for i« sufficiently close
to the singularity can be written as

i=(x,—x)-ay’, (5.4)

for some constant a, chosen to be non-negative. As a consequence, near the outer edge of
the jet where & =0 and ¢ = ¢, the streamfunction must satisfy

0=(x,—%)—a’y2, (5.5)
and hence
Y (X))~ —(x, — x)"%a (5.6)

as x— x,. This demonstrates that, in the general case, i, behaves algebraically in a similar
manner to the exact solution in Sec. 3, with the thickness of the layer also increasing in
proportion to (¥, — )% in the same limit.

To obtain more details of this structure, (5.4) can be written in terms of the original
coordinates (x, y) in the form
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s - _ = 252 (5.7)

and integrated with respect to y to yield the solution
¢ = —(%, — %) tanh[ay(x, — ¥)'"*}/a, (5.8)

equivalent to that described for a ‘bottom frictional jet’ in Gadgil [12]. The corresponding
velocity profile can then be calculated as

i = (%, — %) sech’[ay(x, — x)"'*], (5.9)

and this matches closely with the numerical solutions in Fig. 5 close to the singularity. The
reoccurrence of the sech® velocity profile, like that in the exact solution, is remarkable. To
determine completely the solution in (5.8) and (5.9), the appropriate value of the parameter
a for any particular initial condition needs to be evaluated, and this can be obtained from the
numerical solutions close to x = x,. This was achieved by evaluating d*u/3y* on y=0 and
using these as x— x, to deduce the value of a that matches with (5.4) in each case. Some
care was necessary in this procedure since the numerical method used in Sec. 4 is only
second-order accurate and the truncation errors in the calculations are of the same
magnitude as the values of 4°#/dy° near x,; to minimise these errors, Richardson extrapola-
tion was used at fixed values of ¥, before dividing by (¥, — ¥)° to yield —2a> Despite these

difficulties, the values of a listed in Table 1, obtained using

Table 1. Singularity positions X, extrapolation on profiles with up to 100 points in both x and
and values of the parameter a in

(5.8) for each of the profiles in y, were consistent to 2 significant figures. In particular,
(4.4) and (4.5) using the stated since the exact solution corresponding to profile (4.3) is
values of ¢ known exactly, it can be shown that a= (8 + ¢*) V2
Profile ¢ &, a and hence that the value given for this profile is accurate to
(4.42) 1 0.605 0.470 2 decimal places; this suggests that the other values in Table
(4.4b) 1 0614 0481 1, obtained using a similar method, are likely to be equally
O3 Mmoo

The solution outlined above identifies the precise nature
of the singularity as any form of jet empties, with the &
velocity component changing abruptly from a linear decrease for x <x, to a completely
stagnant flow with # = 0 once x > x_. This behaviour is clear in Fig. 6, where the streamlines
based on (5.8) are shown, and there is no apparent connection between the flow on either
side of x = x, (identified by the broken line). Perhaps more noticeable is that the blowing
velocity v,, at the outer edge of the jet, from (5.6), is

o, ~ (%, — %) "*2a ; (5.10)

for x < x_ but zero for x > x_. This opens the question of how such a marked change in
behaviour across x = x, can be resolved and why the boundary-layer equations develop a
singularity at that point. This is pursued in the following section.

Finally, although the solution (5.8) was derived here using a transformation into Von
Mises coordinates, a more traditional similarity approach, assuming that

=, - DFE, - 1)), (5.11)
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5.0 0.0 I—%, 5.0

Fig. 6. Streamlines of the flow on the approach to the singularity, based on the analytical solution (5.8) witha = 1.
The flow is plotted over the region —5<x —x, <5 and 0<y <5 with contour interval Ay =0.1.

for constants « and B, yields an identical solution. This was the method used in Sec. 4.2 of
Gadgil [12] to solve an equivalent equation to (5.1). However, since no matching was
performed with the y <1 flow in that paper, the result that @ = 3, obtained here, was not
available. In general, the technique of using & rather than y as an independent variable is
preferable to assuming a solution of the form (5.11) since no a priori assumptions about the

algebraic behaviour of both ¢ and the thickness of the layer are necessary.

6. Resolution of the singularity

The structure of the flow on the approach to the singular point x = x, outlined for ¢ <1 and
¢=0(1) in Sec. 3 and Sec. 5, particularly the development of the blowing velocity v in
(5.10), suggests that some of the x derivatives neglected in the formulation of (2.14) will
eventually become important. Further, with the thickening of the layer as x — x_ there will
eventually be a point where the jet can no longer be considered to be relatively thin and
therefore a rescaling of the full equations (2.6) and (2.10) appears to be necessary near x,.
Moffatt and Toomre [16] considered a similar rescaling in the magnetohydrodynamic context
but, since behaviour of the flow outside of the jet is very different in that case, their results
are not immediately applicable here (nor, as it turns out, are they quite so simple).

Comparing the sizes of the two terms on the right-hand side of (2.6), it is clear that the
dv/dx term is going to increase as the singularity is approached while the Jdu/dy term,
considered to be dominant in boundary-layer analysis, is going to decrease as the layer
thickens and u approaches zero. Using the sizes of these terms based on the solution
presented in Sec. 5, it is clear that they will be of the same magnitude once

) a(x, — x)*"?

a/\uz(xs _x)3/2 -~ YR

(6.1)

and this suggests that both the x and y scales are of order 6°'? in the breakdown region, with

¥ of order 8*'>. The region is therefore asymptotically short for & <1, relative to the length
of the jet, and fat compared to the width of the jet.
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To examine the flow in the region it is appropriate to introduce the scaled variables

" SZA 1/3 N SZA 1/3

x=(x—x:)/<7> and y=y/<7> (6.2)
along with a scaled streamfunction

- 64 1/3

Y= ¢/<A—aa> (6.3)

and corresponding velocity components defined through the equivalent form of (3.2). The
factors of a and A in these expressions are not crucial but they ensure that the problem in
terms of the scaled coordinates can be posed in its simplest form. Transforming the
equations, the vorticity equation (2.10) reduces to the inviscid form

U—=+t0—-—==-¢ (6.4)

for 8 <1, where ¢ has been scaled to z based on the scales for 1/7, X and y given above. This is
equivalent to the equation solved on the approach to the singularity in Sec. 5, where the flow
was also inviscid to leading order, except that now the streamfunction and vorticity are
related through the elliptic equation

V2i=¢, (6.5)

with the obvious definition for Vi. It is the presence of the x derivatives in this equation
which enables the singularity to be resolved.

The boundary conditions on the flow governed by (6.4) and (6.5) are determined by the
inflow of fluid from the erupting jet as X — —oo, which is a region of thickness in y of order
(=%)"""% and by matching to an appropriate potential-flow solution on all other (outflow)
boundaries, where ¥° + y>> 1. This latter condition is appropriate since (6.4) implies that
the vorticity will decay to zero along all streamlines and therefore that, far from the inflow,
eidj will equal zero. More precisely, scaling (5.8) implies that

¢ ~ —(—=%)"'? tanh[ §(—7)""’] (6.6)

for ¥ of O(—x)~''? as ¥— —, while a potential-flow solution which matches (4.6) and tends
to a stagnant flow at infinity is

~

- .8
¢~ —F"%sin 3 (6.7)

for 7> 1, with polar coordinates (7, ] ) defined in the usual way. As a result, the streamlines
follow the parabolae

P =447 (F + ¢, (6.8)

once they have left the jet outflow for y > (—%)~'/? when ¥ is large and negative.
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-5.0 0.0 z 5.0

Fig. 7. Streamlines of the scaled streamfunction J within the inviscid region at the end of the jet, described in Sec.
6. The flow is plotted over the region —5<% <5 and 0= y =<5 with contour interval Ay =0.1.
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(b)
Fig. 8. Cross-sections of the values of the transverse velocity U along various lines y = constant based on (a) the
upstream similarity solution (6.6) and (b) numerical solutions of (6.4) and (6.5).

To ensure that the equations (6.4) and (6.5) are able to resolve the singularity, and that
matching onto (6.7) is appropriate, the equations were solved numerically in a region with
—20<x <5 and 0 <y <5, with the initial value of / based on the second derivative of (6.6)
at ¥ = —20 and the boundary conditions for the Poisson equation (6.5) based on a composite
form of (6.6) and (6.7). The discretisation of (6.4) was based on similar principles to the box
method (Keller and Cebeci [17]), and the solution was obtained by marching in x starting
from the initial condition. The Poisson equation (6.5) was discretised using a standard
five-point stencil and solved directly using a cyclic-reduction method. Both equations were
then solved alternatively using an iterative process until convergence to within a relative
accuracy of 0.01% was obtained.

The resulting streamlines for the flow are shown in Fig. 7, and these are markedly
different from the corresponding plot in Fig. 6, where no streamlines extend beyond x,
(equivalent to £ = 0). It is apparent that, as the vorticity decays towards the end of the jet,
the streamlines match smoothly onto the potential flow (6.7), with velocities gradually
tending towards zero, in proportion to 7', as F— . Of particular interest is the manner in
which the discontinuity in the transverse velocity v is smoothed out, and so cross-sections for
this quantity are presented in Fig. 8 for various fixed values of y, along with the
corresponding behaviour predicted by the similarity solution (6.6). For finite values of y, the
latter show a jump discontinuity in v at ¥ = 0, and from Fig. 8(a) it is clear that the strength
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of this increases as y is increased (becoming unbounded as y— ). The corresponding
solutions of (6.4) and (6.5), shown in Fig. 8(b), match onto the behaviour in Fig. 8(a) for
large negative values of x but, as x becomes of O(1), the velocities start to decrease and
eventually approach zero as x— . Plots of & and { show similar, but less dramatic,
smoothing of the singularity across the region.

7. Induced inviscid flow

As with most boundary-layer flows, the influx and efflux at the outer edge of the jet, as
y— o, induces a larger-scale inviscid flow in the otherwise stagnant fluid surrounding the jet.
For a flow with ¢ <1 this fluid feeds the jet profile for small values x and then, once the jet
begins to detrain fluid beyond x=0.302 (see Fig. 2), the small fluid is returned to the
exterior of the jet to join a slow recirculation containing velocities of order 8. Within this
recirculation region the x and y scales are both of O(A) and so, as a consequence of (2.10),
the flow must be irrotational, with the jet appearing as a line source of fluid along the x axis
in the 8 < 1 limit. The flow for ¢ <1 therefore satisfies the condition ¢ =0 both on x =0 and
on y =0 for x > x,, where x, = Ax,, while at the outer edge of the jet, for 0 <x <x_, the
values of ¢ are F8y,(x/A) on y = =0.

An exact solution to this potential-flow problem can be derived using standard Green’s
function methods and it has the form

(x', +0)x’ dx’
[(x = %)+ y*][(x + %) + y°]

¥(x, y) = %X L (7.1)

in terms of the values ¢(x’, +0) = —§F(x'/A) at the edge of the jet. The corresponding
streamlines have been plotted in Fig. 9 and these indicate that the influence of the jet
extends an O(A) distance from the source through this slow secondary flow. The detail of the
flow near the point (x, y) = (x,, 0) is similar to that shown in Fig. 8, confirming the smooth
matching of this flow with that described in Sec. 6. Although a tangential velocity is induced
against the wall at x = 0 by this secondary flow, the relatively slow speed of the flow in the
E''* layer near x =0 ensures that it acts passively in the parameter range considered here
and will not separate. Far from the source, the solution in (7.1) has the form

Xy
~C-—"—55, 7.2
P¥(x, y) (x2+y2)2 (7.2)
where
C—ifxs ! +0 rd/ 73
—Woz//(x, )x'dx’, (7.3)

and this indicates that the corresponding velocities decrease rapidly, in proportion to r=> as
the distance r from the source increases. In fact, using (3.4), it can be shown that C is related
to the integral of the momentum flux, through

Cc= —% fo J(x')dx’ . (7.4)
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Also apparent in Fig. 10 is that an O(8) velocity is induced by the secondary flow on y = +0,
and this forces an O(8) perturbation to the motion in the jet described in Sec. 3. This
perturbation is, however, unlikely to change the leading-order flow through any interaction,
except perhaps in a very small region near x = 0.

For ¢ of O(1) the qualitative form of the secondary flow remains similar except that, in
addition to the recirculating flow, there is a finite mass flux (of order &) through the source
which produces a corresponding outflow far from the source with

g~ —27_‘-_ 8,.(0) arctan( y/x) (7.5)

as r— ., Using the linearity of the problem, this contribution can be added onto the solution
(7.1), with the values of ¢(x'+0) based on the numerical calculations of _(x/A). The
resulting velocities far from the source are proportional to 7~ ' in this case, rather than > as
deduced above for ¢ <1.

Due to the thinness of the jet relative to its length, for 8 <1, the analysis in Secs. 3-6
remains valid for other than semi-infinite regions of fluid, provided there are no obstructions
to the jet flow for 0 <x <x,. However, the induced flow, such as that shown in Fig. 9, is
altered when the inflow is forced by something other than a point momentum source or when
the geometry of the stagnant region is different. However, this has no effect on the
leading-order properties of the jet.

2.0

y/A

0.0

0.0 1.0 2.0

z/A
Fig. 9. The O(8) streamlines induced by the inflow and outflow from the jet plotted over the region 0 < x/A <2 and
0=<y/A =<2, with contour interval Ay = 0.054.
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8. The case ¢ >1

Some of the modifications to the flow in the jet as ¢ is increased for a particular form of
profile were noted from the plots of the exact solution for a sech® profile, shown in Fig. 3.
The same exact solution tends to the form (5.9) for ¢ > 1, with the singularity £, — (12¢) ™"/
and a approaching (3¢*/4)™""*, and this indicates that the flow becomes effectively inviscid as
¢ becomes large. More generally, comparing the sizes of the 4%i/dy° and i terms in (2.14)
for a general initial profile of the form

i(5) = (&) U(51e) | (8.1)

it is clear that the former are relatively small as ¢— o and that the subsequent development
of the jet will be governed by (5.1) rather than the full equation.
Solutions of (5.1) for various forms of initial profile were examined by both Gadgil [12]
and Moffatt and Toomre [16] in cases where the function 4 in (5.2) takes a simple form and
oy .
55 =~ 5) = h(@) | (8.2)
can be integrated analytically to yield ¢(x, y). In all of these cases the solution had a
singularity at the point %, = Z,(0), of magnitude ¢~ '’> for ¢>1 with the normalisation in
(2.20), and Gadgil [12] noted that for each of his profiles the flow developed into a similar
form to the similarity solution (5.9) as x — x,. From the analysis in Sec. 5 it is clear that this

[

0.6

-2.0 -
Fig. 10. Plots of (£, ) and (%, 0) for the inflow profile (9.2) with ¢ = 1.
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Fig. 11. Plots of the velocity profiles i(x, y) based on numerical calculations with the initial profile (9.2) with ¢ =1,
plotted at ¥ =0.0, 0.1, 0.2,...,0.5.

must occur because, for the profiles chosen by Gadgil, k() is proportional to ¢ for ¢ small
and therefore (8.2) can be approximated by (5.4) close to the singularity. In the more
general case of symmetric profile with a single velocity maximum, however, h can take any
monotonically increasing form, for example h = —b*§*, and this would seem to produce a
different limiting solution to that described in Sec. 5. A further example of this is the ‘top
hat’ profile considered by Moffatt and Toomre [16] which is interesting in that the resulting
motion is essentially stagnation-point flow within the jet with no motion outside; as a result
there is a finite rather than an infinite discontinuity in ¢ at x.. In both of these exceptional
cases, however, there will be a (1/¢*) perturbation to A, introduced through the diffusive
term in (2.14), which would be proportional to ¢ and sufficiently close to x, this would
dominate the leading-order behaviour, finally leading to a profile of the form (5.9).

Once the flow is within a distance of order ¢'?6*'> of x,, a similar analysis to that
described in Sec. 6 can be used to resolve the singularity in the flow. The size of this region
increases with ¢ while the length of the jet, of O(¢~''?), decreases and both are of the same
size once ¢ is of order 8 ~*'>. At this stage the size of the breakdown region is of magnitude
8" in both x and y and the equations (6.4) and (6.5) describe the motion of the jet from the
point of inflow onwards. With the scaling of the momentum flux based on (2.20), the
velocities in this region are of order 8'°, of the same magnitude as the size of the region.
The resulting outer flow, equivalent to that described in Sec. 7, is simply of the form (7.2)
everywhere.

9. Asymmetric jets
For a jet with an asymmetric inflow profile, but a single velocity maximum, most of the

theory described in the previous sections remains appropriate, subject to minor modifica-
tions. For example, when ¢ <1 the flow develops into a symmetric Bickley-type profile over
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a distance of O(¢), so that the resulting flow for x of O(1) turns out to be symmetric as in
Sec. 3.

For ¢ of O(1) the jet develops asymmetrically but, using a Prandtl transformation to define
y = 0 at the maximum of the jet, it is found that a singularity similar to that described in Sec.
5 still occurs as the jet loses momentum. In this case, however, the value of l/_f need not be
zero on y =0 on the approach to x,, and therefore (5.4) would take the alternative form

i=(%,-%) - a(y—¢). (9.1

This leads to a similar sech® profile to (5.9), but with (5.8) shifted by an amount . These
differences are illustrated in Fig. 10, where the values of #(x, 0) and y(x, £») are plotted
based on numerical solutions for a jet with the initial profile

iy (y)=al(e®+277%). (9.2)

In particular, , is close to 0.14 for this flow and one side of the jet has continuously
detrained fluid while the other entrains fluid in the initial stages of the motion. The velocity
profiles corresponding to this inflow are shown in Fig. 11, and they indicate that the jet soon
develops into a symmetric form, with a sech’ type profile, as would be expected from (9.1).
Thus the approach to the singularity turns out to be symmetric, as before, and the results of
Sec. 6 can be applied unchanged. The induced flow described in Sec. 7 will, however, be
asymmetric with different values of ¢ on y = *0 and therefore (7.1) cannot be applied
without modification.

For large values of ¢, where the flow within the jet is determined by (8.2), the position of
the velocity maximum remains at the same value of i as the jet proceeds, although the flow
develops diffeently on either side of the maximum, as for the ¢ =O(1) case. On the
approach to the singular point, (5.4) remains accurate (provided % « ¢° for ¢ <1) and the
flow is locally symmetric. Apart from ¢, being equal to zero, the induced outer flow is similar
to that described above for ¢ = O(1).

10. Conclusions

The most significant result of the calculations in this paper is the demonstration of the
development of a singularity within a wide class of free jet flows in a rotating fluid and the
ultimate resolution of this singularity, in the manner described in Sec. 5 and Sec. 6. Initially,
the results of Gadgil [12] appear to apply only to the particular case of a jet induced by a
momentum source, but, as described in Sec. 4, numerical solutions suggest that a similar
form of singularity will occur for any form of jet and that a sech® velocity profile must
develop on the approach to this point.

On the same basis, as described above, it can be expected that a singularity will form for a
jet which moves along a non-slip boundary, for example where a solid wall is inserted along
the x axis in Fig. 1. In that case it can be expected that there will be an additional viscous
layer close to y =0 on the approach to the singularity, rather like the viscous layer in Page
[18] and Page and Cowley [19].

One particular case where the results of this study can be applied immediately is to the
proposal for the structure of separated flow past a cylindrical object in Page [3], where the
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lower part of the separated shear layer is assumed to be turned by 180°, forming into a jet
along the axis of symmetry, in the manner of Smith [20]. Although this jet would be singular
at its initial point, in the sense that its curvature is unlikely to be finite on the line of
symmetry, it can be expected that it would undergo the same process as described in this
paper, with its centreline velocity decreasing to zero before it reaches the rear of the
cylinder. Whether this occurs depends crucially upon the initial momentum flux of the jet
and, modelling it with a Bickley-type source of strength J, it is a simple matter to show that
both the length of the jet and its entrained flux are multiplied by a factor of (J)''? when
J#1. As a result, the distance before a singularity is encountered in the flow described
above would be equal to A(J)"'’x, which, when the obstacle is a circular cylinder, would be
greater than the length of the separated region (see Page [3]) if J is larger than about one.
Since much of the momentum of the shear layer would be lost by the time the reattachment
point is reached, this would be unlikely, although it would need to be verified by
more-detailed boundary-layer calculations for the separated shear layer. However, the
absence of such a jet in the finite-8 numerical calculations of both Matsuura and Yamagata
[8] and Becker [9] does support this view. As a consequence, the portion of the flow marked
I1L; in Fig. 6 of Page [3] would not be present for the separated flow past a cylinder, to O(5),
which considerably simplifies the calculation of the shear-layer region, marked III,. For
bodies with other shapes, such as the aerofoil shown in Page [5], the jet may still contain
fluid when the rear of the obstacle is encountered, and so region III, could still exist but may
not extend all of the way back to the separation point.

The analysis in this paper is scaled appropriately for a jet with a momentum flux J of
O(8), but the case ¢>1 examined in Sec. 8 is also interesting when J is O(1). In this
situation the length of the jet is, from above, of order (J/ ¢)'/? when ¢ < 1, while the size of
the region equivalent to that described in Sec. 6 is O(c)""% These two regions obviously
merge once ¢ is O(1), forming a region with size of O(c) in which (6.4) and (6.5) are
appropriate. The flow for r > ¢ then has the form (7.2).
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